3 закона ньютона формулы и определения

I. Механика

3 закона ньютона формулы и определения

Галилей исследовал законы движения самых обычных предметов, которые были у него под рукой. Изучая эти законы, производя различные опыты, чтобы выяснить, как скатываются шарики по наклонной плоскости, как качаются маятники и т. д.

Галилей открыл великий принцип, который называется принципом инерции и состоит вот в чем: если на предмет ничто не действует и он движется с определенной скоростью по прямой линии, то он будет двигаться с той же самой скоростью и по той же самой прямой линии вечно. Вот такое удивительное свойство нашего мира. Как ни странно это звучит для тех, кто пытался заставить шарик вечно катиться по полу, но если бы эта идеализация была верна и на шарик ничто не действовало (например, трение о пол), то шарик все время катился бы с постоянной скоростью.

Строго говоря, суть первого закона Ньютона состоит в существовании особых систем отсчета, называемых инерциальными, в которых только и верны другие законы Ньютона.

Признаком инерциальной системы отсчета является то, что скорости тел относительно нее меняются только под влиянием сил, действующих со стороны других тел.

В неинерциальных системах отсчета (например, на вращающейся карусели или в ускоряющемся вагоне) скорости тел могут меняться и без физического воздействия.

Нет уникального стандарта покоя. Например, в вагоне с завешенными шторами и изолированном от звуков вы не определите движетесь вы равномерно или покоитесь. Понятие движения имеет смысл, только если оно задано относительно других объектов. Так устроен мир. Подробнее читайте блок Стандарт покоя из сочинений С.Хокинга, Л.Млодинова *

Второй закон Ньютона

Наступила очередь Ньютона, который раздумывал над таким вопросом: а если шарик не катится по прямой линии, что тогда? И он ответил так: для того чтобы хоть как-нибудь изменить скорость, нужна сила. Например, если вы подталкиваете шарик в том направлении, в каком он катится, то он покатится быстрее. Если вы заметили, что он свернул в сторону, значит, сила действовала сбоку.

Закон можно проверить экспериментально. Например, если мы привяжем к веревке камень и станем крутить его над головой, то почувствуем, что за веревку надо тянуть. Правда, когда камень летает по кругу, величина скорости не изменяется – зато изменяется ее направление.

Значит, нужна сила, которая все время тянула бы камень к центру, и сила эта пропорциональна массе.

Если мы возьмем два разных предмета и станем раскручивать сначала один, а потом другой с той же самой скоростью, то во втором случае потребуется сила, во столько раз большая, во сколько масса второго предмета больше массы первого.

Массу называют мерой сопротивления тела силовому воздействию. Масса является мерой инерции, ее иногда называют инертной массой.

Формула

Проанализировав огромную совокупность опытных данных, Ньютон нашел простую связь между силой и ускорением:

Третий закон Ньютона

Силы возникают попарно. Вспомним закон тяготения: два тела притягивают друг друга с одной и той же силой. Но не только силы притяжения действуют обоюдно.

Нам кажется, что ударив ногой по мячу, только мы подействовали на мяч с некоторой силой. Мало кто задумывается, что в момент удара мяч ударил нас с точно такой же силой! В этом есть суть третьего закона Ньютона.

Силы всегда возникают попарно, при этом одной природы и равны по значению.

Гравитационные, магнитные и электрические силы

Демонстрация равенства сил

Силы, которые возникают попарно приложены к разным телам. Если мальчик, стоя, давит на пол, пол давит на мальчика. Одна сила приложена к полу – это вес (мальчика). Сила, с которой пол “отвечает” приложена к мальчику – реакция опоры. Возникающие силы всегда направлены в противоположные стороны.

Главное запомнить

1) Суть законов; 2) Формулу второго закона Ньютона;

3) Точки приложения и направления попарно возникающих сил

Стандарт покоя из сочинений С.Хокинга, Л.Млодинова *

Важнейшее различие между учением Аристотеля и идеями Галилея и Ньютона состоит в том, что Аристотель считал покой естественным состоянием любого тела, к которому оно стремится, если не испытывает действия некоей силы или импульса. В частности, Аристотель полагал, что Земля пребывает в состоянии покоя. Но из законов Ньютона следует, что нет никакого уникального стандарта покоя.

Можно сказать, что тело А находится в состоянии покоя, а тело В перемещается относительно него с постоянной скоростью, или что тело В пребывает в покое, а тело А перемещается, и оба утверждения будут одинаково верны.

Например, если забыть на мгновение, что Земля вращается вокруг своей оси и обращается вокруг Солнца, то в равной мере можно говорить, что Земля находится в состоянии покоя, а поезд движется по ней на север со скоростью девяносто миль в час или что поезд находится в со-стоянии покоя, а Земля движется на юг со скоростью девяносто миль в час.

Если провести в поезде эксперименты с движущимися телами, все законы Ньютона подтвердятся. Например, играя в пинг-понг в вагоне поезда, убеждаешься, что шарик повинуется законам Ньютона точно так же, как и шарик на столе у дороги. Так что невозможно узнать, что именно движется – поезд или Земля.

Как проверить, кто прав – Ньютон или Аристотель? Вот один из возможных экспериментов. Вообразите, что вы находитесь внутри закрытого контейнера и не знаете, стоит ли он на полу вагона в движущемся поезде или на твердой поверхности Земли, стандарте покоя согласно Аристотелю.

Можно ли определить, где вы? Если можно, Аристотель, вероятно, был прав: состояние покоя на Земле является особым. Однако это невозможно.

Эксперименты, выполненные внутри контейнера в движущемся поезде, будут протекать точно так же, как и те, что проделаны внутри контейнера на «неподвижном» перроне (мы считаем, что поезд не испытывает толчков, не поворачивает и не тормозит). Играя в пинг-понг в вагоне поезда, можно обнаружить, что шарик ведет себя точно так же, как и шарик на столе у дороги.

И если, находясь внутри контейнера, вы играете в пинг-понг, при разных скоростях поезда относительно Земли – 0,50 или 90 миль в час – шарик всегда будет вести себя одинаково. Так устроен мир, что и отражено в уравнениях законов Ньютона: не существует способа узнать, что движется – поезд или Земля.

Действительно ли существенно, кто прав – Аристотель или Ньютон? Идет ли речь о различии взглядов, философских систем, или это проблема, важная для науки? Отсутствие абсолютного стандарта покоя имеет в физике далеко идущие последствия: из него вытекает, что нельзя определить, случились ли два события, которые имели место в разное время, в одном и том же месте.

Чтобы уяснить это, давайте предположим, что некто в поезде вертикально бросает теннисный шарик на стол. Шарик отскакивает вверх и через секунду снова ударяет в то же место на поверхности стола. Для человека, бросившего шарик, расстояние между точками первого и второго касания будет равно нулю.

Но для того, кто стоит снаружи вагона, два касания будут разделены приблизительно сорока метрами, потому что именно столько пройдет поезд между двумя отскоками шарика (см. рисунок).

Согласно Ньютону оба человека имеют равное право считать, что находятся в состоянии покоя, так что обе точки зрения одинаково приемлемы. Ни один из них не имеет преимущества перед другим, в противоположность тому, что считал Аристотель.

Места, где наблюдаются события, и расстояния между ними различны для человека в поезде и человека на платформе, и нет никаких причин предпочесть одно наблюдение другому.

Расстояние, которое преодолевает тело, – и его путь – могут по-разному оцениваться разными наблюдателями.

Ньютона очень беспокоило отсутствие абсолютных положений, или абсолютного пространства, как принято было говорить, поскольку это не согласовывалось с его идеей абсолютного Бога.

Фактически он отказался принять отсутствие абсолютного пространства, несмотря на то, что его законы подразумевали это. За эту иррациональную веру его критиковали многие, особенно епископ Беркли, философ, полагавший, что все материальные тела, пространство и время – иллюзия.

Когда знаменитого доктора Джонсона ознакомили с мнением Беркли, он вскричал: «Я опровергаю это так!» – и ударил ногой по большому камню.

И Аристотель, и Ньютон верили в абсолютное время.

То есть полагали, что можно однозначно измерить интервал времени между двумя событиями и полученное значение будет одним и тем же, кто бы его ни измерял, если использовать точные часы.

В отличие от абсолютного пространства, абсолютное время согласовывалось с законами Ньютона. И большинство людей считает, что это соответствует здравому смыслу.

Тем не менее, в двадцатом столетии физики были вынуждены пересмотреть представления о времени и пространстве. Как мы убедимся в дальнейшем, ученые обнаружили, что интервал времени между двумя событиями, подобно расстоянию между отскоками теннисного шарика, зависит от наблюдателя. Физики также открыли, что время не является совершенно независимым от пространства.

Ключом к прозрению стало новое понимание свойств света. Свойства эти, казалось бы, противоречат нашему опыту, но наш здравый смысл, исправно служащий нам, когда мы имеем дело с яблоками или планетами, которые движутся сравнительно медленно, перестает работать в мире околосветовых скоростей.

Скачать книгу Стивена Хокинга и Леонарда Млодинова “Кратчайшая история времени”

демонстрация. Величие и простота законов Ньютона*

Материал взят с сайта Элементы большой науки

Сергей Борисович Рыжиков — кандидат физико-математических наук,

доцент физического факультета МГУ им. Ломоносова.

Источник: http://fizmat.by/kursy/dinamika/Njuton

Урок физики.

3 закона ньютона формулы и определения

Класс: 9

Цели и задачи:

  • Повторение ранее изученного материала, необходимого для контроля знаний учащихся и лучшего усвоения новой темы «Законы Ньютона».
  • Познакомить учащихся с первым законом Ньютона. Научить использовать его для объяснения физических процессов.
  • Учить школьников пользоваться физическими приборами, выполнять физический эксперимент, делать выводы о наблюдениях.
  • Вызвать интерес к изучению физики и биографиям великих людей науки.

Оборудование: Мультимедийная установка, опорные конспекты, бруски, грузы, клубок ниток, динамометры, карточки с описанием эксперимента.

Учитель: Мы сейчас с вами на уроках физике изучаем раздел « Механика». Механика объясняет закономерности механического движения и причины, вызывающие это движение. Классическую механику называют «Механикой Ньютона».

Она включает в себя кинематику, динамику и статику. Кинематика изучает движение тел, не рассматривая причин, вызывающих эти движения.

Мы изучали законы кинематики, которые помогают нам рассчитать, где находиться изучаемое тело, с какой скоростью и по какой траектории оно движется.

А что является причиной движения тел? Приведите примеры движения тел и назовите причины, вызывающие это движение.

Ученики:

  • Снег падает на Землю под действием силы тяжести.
  • На машину при торможении действует сила трение.
  • Мяч отскакивает от земли под действием силы упругости.
  • Женщина везёт на санках ребёнка, преодолевая силу трения санок о снег и силу тяжести, действующие на ребёнка и санки.
  • При полете самолета на самолёт действуют сила тяги двигателей, сила притяжения Земли, сила воздушных масс.

Учитель: Объясняя причины движения тел, учащиеся использовали слово «сила». Дайте определение этому физическому понятию.

Ученик:Сила является мерой взаимодействия тел. Это – векторная величина. Она имеет точку приложения, направление и величину (модуль). Обозначается буквой F, измеряется в ньютонах.

Учитель: Тело может придти в движение, если на него подействует другое тело или несколько тел. Как нам поступать в этом случае?

Ученик: Необходимо найти R-равнодействующую этих сил.

Учитель: Рассмотрим условия покоя и равномерного прямолинейного движения . Если тело находиться в покое, означает ли это, что на него не действуют другие тела? Приведите примеры.

Ученик: Книга лежит на парте, Она в покое относительно парты, потому что на неё действуют две силы: сила тяжести, и сила упругости стола. Равнодействующая этих сил равна нулю.

Учитель: Машина движется по дороге с постоянной скоростью 60 км/ч. Равнодействующая всех сил равна нулю?

Ученик: На машину действует сила тяги мотора и сила трения колёс о дорогу. Но так как машина не стоит на месте, а движется, то сила тяги – больше.

Учитель: Если машина движется равномерно, не меняя скорости и направления, этот ответ является ошибочным. Позже мы к этому вернёмся и всё разберём. Прошу прокатить металлический шарик по стеклу и ответить на мои вопросы. У него нет мотора, а почему он так долго движется?

Ученик: Шарик по гладкому стеклу движется по инерции.

Учитель: Дайте определение физическому понятию – инерция.

Ученик: Явление сохранения скорости тела при отсутствии действия на него других тел называют инерцией.

Учитель: Мы будем изучать законы Ньютона. Они относятся к разделу механики – «Динамика»

Ньютон объяснял движение тел в зависимости от действия на тело различных сил. Его труд имел название «Математические начала натуральной философии». Ньютон один из первых использовал формулы для объяснения движения тел.

Первый закон Ньютона называют «Законом инерции».

(Запись на доске или использование мультипроектора – Рисунок 1)

I закон Ньютона.

F=0, R=0  —> V=0 или V=const, (a=0)

Существуют такие системы отсчета (инерциальные системы отсчёта), относительно которых поступательно движущиеся тела сохраняют свою скорость постоянной, если на них не действуют другие тела или равнодействующая всех сил равна нулю.

Инерциальная система отсчёта – система отсчёта, относительно которой свободная материальная точка, не подверженная действию других тел, движется равномерно и прямолинейно (по инерции).

Предлагаю прочитать текст в начале §10 .В нём рассказывается о теории Галилео Галилея и Аристотеля на характер движения тела при отсутствии внешнего воздействия на него.

Учитель: Как называется физическая величина, которая характеризует изменение скорости?

Ученик:Ускорением тела при его равноускоренном движении называется величина, равная отношению изменения скорости к промежутку времени, за которое это изменение произошло. Ускорение обозначается буквой a, единица измерения – м/с2, является векторной величиной.

Учитель: Дайте определение физическому понятию – инертность тела. Сравните тела с разной инертностью.

Ученик:Инертность тел – свойство, присущее всем телам и заключающееся в том, что тела оказывают сопротивление изменению их скорости (как по модулю, так и по направлению).

Большой книжный шкаф обладает большей инертностью, чем детский стул. Этот шкаф сдвинуть с места и привести в движение труднее.

Учитель: Какая физическая величина является мерой инертности?

Ученик:Масса – мера инертности тела. Масса обозначается буквой – m, единица измерения – кг, является скалярной величиной.

Учитель: Приведите примеры, когда тела имеющие разную массу по-разному сохраняют свою скорость.

Ученик: Перед красным светом светофора тормозной путь грузовика больше, чем у легковой машины, если начальные скорости у них были одинаковые. Чем больше масса машины, тем медленнее она меняет свою скорость.

Учитель: Вспомним пример, когда машина двигалась с постоянной скоростью 60 км/ч по дороге. Этот случай объясняется первым законом Ньютона. При каком условии скорость тела бывает постоянной?

Ученик: Скорость тела постоянна, если сумма всех сил, действующих на тело равна нулю. Следовательно: сила тяги мотора машины равна силе трения колёс о дорогу.

Учитель: Назовите силы в природе, с которыми познакомились в 7 классе.

Ученик: Это – сила тяжести, сила упругости и сила трения.

Учитель: Дайте определение силы тяжести (Рисунок 2)

Ученик: Сила, с которой Земля притягивает к себе тело, называется силой тяжести. Сила тяжести обозначается буквой F с индексом Fтяж. Это – векторная величина, вычисляется Fтяж= mg, измеряется в ньютонах.

Учитель: Приведите примеры её проявления

Ученик: Выпустим из рук камень, он упадет на землю. То же самое происходит с любым другим телом.

Учитель: Какие особенности действия силы тяжести вы знаете?

Ученик: Сила тяжести всегда направлена вертикально вниз к поверхности Земли. Человечество не научилось преодолевать эту силу. Она действует на все тела на Земле.

Учитель: Дайте определение силы упругости (Рисунок 3)

Ученик: Сила, возникающая в результате его деформации и стремящаяся вернуть тело в исходное положение, называется силой упругости. Сила упругости обозначается буквой F с индексом Fупр. Это векторная величина, вычисляется Fупр = kX, измеряется в ньютонах.

Учитель: Приведите примеры проявления силы упругости

Ученик:

  • Когда мы стремимся порвать нить, мы ощущаем её сопротивление. Это проявление силы упругости нити.
  • Когда спортсмены прыгают на батуте, они используют упругие свойства этого спортивного снаряда.

Учитель: Дайте определение силы трения. (Рисунок 4)

Ученик:Сила трения возникает на поверхности соприкосновения прижатых друг к другу тел при относительном перемещении их и препятствует их взаимному перемещению. Силу трения обозначают буквой F с индексом Fтр. Это векторная величина, вычисляется Fтр = μN, измеряется в ньютонах. μ -коэффициент трения скольжения, N-сила давления на поверхность.

Учитель: Приведите примеры проявления силы трения.

Ученик: Санки, скатившись с горы, постепенно останавливаются под действием силы трения санок о снег.

Учитель: Действие всех сил, которые мы с вами ранее изучали и сейчас повторили, мы должны будем учитывать при решении задач по динамике.

Учитель: Деревянный брусок лежит на горизонтальной поверхности стола. Назовите тела, с которыми он взаимодействует. Изобразите силы, действующие на брусок.

Ученик: На брусок действуют сила тяжести и сила упругости опоры (поверхности стола). Эти силы равны, но противоположно направлены.

Учитель: Маленький железный шарик подвешен на тонкой шелковой нити. С какими телами он взаимодействует? Изобразите силы, действующие на него.

Ученик: На шарик действуют сила тяжести и сила упругости нити. Эти силы равны, но противоположно направлены, поэтому шарик в равновесии.

Учитель: Что произойдет, если сила тяжести, действующая на шарик ,будет больше силы упругости нити?

Ученик: Шарик будет падать вертикально вниз под действием его силы тяжести с ускорением =g

Учитель: Предлагаю сделать небольшой эксперимент с предложенными приборами и телами. (Приложение 1 и Приложение 2)

Изучение движения тела под действием силы.

Оборудование: Лист с описанием эксперимента, деревянный брусок, грузы, нить, измерительная линейка, секундомер, динамометр.

Указания к работе.

  1. Укажите пределы измерения приборов, цену их деления и погрешность измерения.
  2. Создайте соединение предметов, имеющих возможность двигаться горизонтально и самостоятельно.
  3. Сравните скорость движения этой системы при различных вариантах соединения приборов.
  4. Сделайте рисунки полученной установки. Запишите ваши выводы из наблюдений.

Таблица

Измерительные приборыПределы измеренияЦена деленияПогрешность измерения
НижнийВерхний
Динамометр
Измерительная линейка
Секундомер

Дайте ответы на вопросы.

  1. Какая существует зависимость скорости движения тела от его массы, если сила тяги является величиной постоянной? (Это зависимость прямо пропорциональная или обратная?)
  2. Какая существует зависимость скорости движения тела от силы тяги, если масса является величиной постоянной? (Это зависимость прямо пропорциональная или обратная?)

Выберите правильный вариант записи:

Vср~1/m; Vср~m ; Vср~1/F; Vср~F;

(Обычно всё заканчивается тем, что мальчики из двух брусков и двух круглых грузов делают машинку и продолжают с ней эксперимент.)

Ученик:Правильные выводы: скорость бруска – обратно пропорциональна его массе, скорость бруска – прямо пропорциональна силе действующей на него.

Учитель: Сегодня вы выполняли эксперимент, который поможет Вам лучше понять 2 закон Исаака Ньютона. Мы с этим законом познакомимся на следующем уроке более подробно.

Учитель: Предлагаю учащимся оценить свою работу и работу своих товарищей на этом уроке.

Домашнее задание: §10 (ответить на вопросы в конце §10), читать §11. Подготовить доклад об Исааке Ньютоне (по желанию).

Дополнительный материал для учащихся: Биография Ньютона (автор не указан) (Приложение 3).

Литература:

  1. А.В. Пёрышкин. «Физика 7 класс», Дрофа: – Москва, 2009.
  2. А.В. Пёрышкин, Е.М. Гутник «Физика 9 класс», Дрофа: – Москва, 2009.
  3. В.Ф. Шаталов, В.М. Шейман, А.А. Хайт «Опорные конспекты по кинематике и динамике», Просвещение: – Москва, 1989.
  4. Колбергенов Г. и др. «Физика в таблицах и схемах для школьников», «Лист Нью»: – Москва, 2004.
  5. Ю.С. Куперштейн, А.Е. Марон «Физика 9 класс. Опорные конспекты и дифференцированные задачи», С.-Петербург, 1994.

5.02.2010

Источник: http://xn--i1abbnckbmcl9fb.xn--p1ai/articles/563731/

Сила. Три закона Ньютона

3 закона ньютона формулы и определения

Понятие силы в механике — это ключевое понятие. Ключевое — значит основное. Как чупа-чупс без палочки станет обычной никому не интересной карамелькой, так и механика (а точнее — динамика) без силы будет набором непонятной абракадабры.

Из жизни мы знаем, что тела могут действовать друг на друга: мальчик толкает тележку, Солнце притягивает Землю, магнит притягивает железные предметы и т.д.

Сила — это физическая величина, которая как раз таки и характеризует взаимодействие между телами. Сила показывает:

  1. в каком направлении одно тело действует на другое;
  2. насколько сильно одно тело действует на другое.

Итак, сила — это направление и величина. Где-то у нас такое уже было… Конечно, было: это же все вектора у нас имеют направление и величину (длину). А это значит, что сила — это вектор. Обозначается сила (если это не какая-то конкретная сила) буквой F⃗\vec{F}F⃗.

Но на одно и то же тело может действовать несколько тел сразу. Например, тот же железный болт может одновременно притягиваться двумя магнитами:

Логика и наш жизненный опыт подсказывают нам, что притягивать будут оба магнита одновременно. И болт будет притягиваться некоторой “средней силой” так, как будто вместо этих двух магнитов действует один магнит, расположенный примерно посередине между двумя настоящими магнитами.

Все верно. Именно так и будет. А результирующая сила (мы для понятности назвали ее “средняя сила”) — это сумма двух сил:

F⃗=F1⃗+F2⃗\vec{F}=\vec{F_1}+\vec{F_2}F⃗=F1​⃗​+F2​⃗​.

Напомним вам, что силы — это векторы. А векторы складываются двумя способами:

  • по правилу треугольника
  • по правилу параллелограмма.

В нашем примере мы сложили силы по правилу параллелограмма. Если вам непонятен способ сложения векторов, рекомендуем посмотреть тему “Два вида физических величин: скалярные величины и векторные величины”.

Правильное название “средней силы” — равнодействующая сила. Равнодействующую силу находят в том случае, если на тело действует сразу несколько сил. Фактически равнодействующая сила — это результат суммарного действия всех сил.

Сила измеряется в Ньютонах: [F]=1 Ньютон=1 H[F]=1\text{ Ньютон}=1\text{ H}[F]=1 Ньютон=1 H. Ниже мы объясним, как выразить 111 Н через другие величины.

На тело, находящееся на горизонтальной плоскости, действуют две горизонтальные силы (см. рисунок, вид сверху).

Известно, что F1=3F_1=3F1​=3 Н. Чему равна равнодействующая этих сил? Ответ выразите в Ньютонах.

Три закона Ньютона определяют “правила жизни” в механике. Обычно в школе их излагают в прямой последовательности — от первого закона к третьему. Мы поступим по-другому. Мы изложим их в обратном порядке. Нам кажется, что так будет понятнее. Приступим.

Третий закон Ньютона. Попробуйте надавить рукой на стол. При этом ладонью своей руки вы почувствуете поверхность стола. И вы также почувствуете некоторое сопротивление со стороны стола.

Будто и сам стол давит на вас.

При этом, если бы вы не давили на стол, а держали руку неподвижно, а поверхность стола приближалась бы к вашей руке и сама давила на вашу руку, то ощущения были бы точно такими же.

Можно предположить, что когда тело А воздействует на другое тело — тело B (например, вы действуете на стол), — то и тело B действует на тело А.

Рассмотрим другой пример. Девочка А и девочка B стоят на коньках на льду. Девочка А начинает толкать девочку B. Наш жизненный опыт подсказывает нам, что девочка B будет двигаться в ту сторону, куда ее толкает девочка А. Но! Жизненный опыт нам подсказывает, что и девочка А начнет двигаться так, будто ее толкнула девочка B.

Это подтверждает нашу догадку, что когда тело А действует с некоторой силой на тело B, то и тело B действует на тело А.

Оказывается, что наше предположение — верное. Более того, силы, с которыми тела действуют друг на друга, одинаковые (!).

Итак, третий закон Ньютона звучит следующим образом:

Силы, с которыми тела действуют друг на друга, равны по модулю и противоположны по направлению: F⃗1→2=−F⃗2→1.\vec{F}_{1\to 2}=-\vec{F}_{2\to 1}{.}F⃗1→2​=−F⃗2→1​.

Второй закон Ньютона. Представьте себе ситуацию: на столе неподвижно стоит мячик. Мы толкаем его, то есть мы действуем силой. При этом мячик начинает двигаться. Значит, у него появилась скорость.

Итак, сначала мячик покоился и у него была нулевая скорость: V1=0V_1=0V1​=0. А затем мячик двигался, и его скорость была уже не нулевой: V2≠0V_2eq 0V2​≠0. То есть скорость изменилась (!). У нас есть изменение скорости. А это значит, что есть ускорение.

Итак, можно сделать вывод, что сила придает телу ускорение, она “создает” ускорение тела. Логично будет предположить, что бОльшая сила даст мячику бОльшее ускорение: ускорение тела тем больше, чем больше сила. Но это еще не все.

Возьмем два мячика: легкий шарик для пинг-понга и тяжелый железный шарик из подшипника. Подействуем на них одинаковой силой. Оба они получат ускорение. Но ускорение будет разное. Это подсказывает нам жизненный опыт.

Более тяжелый (массивный, с большей массой) стальной шарик получит небольшую скорость; его ускорение будет небольшим.

Легкий (с меньшей массой) шарик для пинг-понга получит большую скорость; ускорение у него будет большим.

Само собой у нас получилось ввести некоторую величину — массу mmm. Получается, что масса показывает, насколько неохотно тело изменяет свою скорость. Если масса тела велика, то ускорение тела — мало. То есть, если величина силы неизменна (сила зафиксирована по величине), то чем больше масса — тем меньше ускорение, которое получает тело.

Итак, мы готовы к тому, чтобы записать второй закон Ньютона. Он звучит так:

Ускорение aaa, которое получает тело, прямо пропорционально силе FFF, действующей на тело, и обратно пропорционально массе тела mmm:a⃗=F⃗m.\vec{a}=\frac{\vec{F}}{m}{.}a⃗=mF⃗​. Более традиционный вид той же формулы:F⃗=m⋅a⃗.\vec{F}=m\cdot\vec{a}{.}F⃗=m⋅a⃗.

Если к телу приложено несколько сил, то в качестве силы F⃗\vec{F}F⃗ выступает равнодействующая сила, то есть сила, которая является векторной суммой всех сил:F⃗=F⃗1+F⃗2+…+F⃗n.\vec{F}=\vec{F}_1+\vec{F}_2+…+\vec{F}_n{.}F⃗=F⃗1​+F⃗2​+…+F⃗n​.

Обратите, пожалуйста, внимание на то, что из равенства F⃗=m⋅a⃗\vec{F}=m\cdot\vec{a}F⃗=m⋅a⃗ следует, что у векторов равнодействующей силы F⃗\vec{F}F⃗ и ускорения тела a⃗\vec{a}a⃗ одно и то же направление.

Как направлена сила — точно так же направлено и ускорение.

Масса mmm измеряется в килограммах: [m]=1 кг[m]=1\text{ кг}[m]=1 кг.

Выше мы уже сказали, что сила измеряется в Ньютонах. Теперь мы можем воспользоваться формулой F=maF=maF=ma и выразить Ньютон через другие единицы измерения: [F]=1 кг⋅мс2=1 Ньютон=1 H.[F]=1\text{ кг}\cdot\frac{м}{с2}=1\text{ Ньютон}=1\text{ H}{.}[F]=1 кг⋅с2м​=1 Ньютон=1 H.

Первый закон Ньютона. Наконец-то мы дошли до первого закона Ньютона. Напомним, что

  • третий закон Ньютона говорит нам о том, как тела взаимодействуют друг с другом;
  • второй закон Ньютона говорит о том, что происходит с самим телом при действии силы;
  • а вот первый закон Ньютона…

А первый закон Ньютона говорит о том, где (при каких условиях) работают 3-й и 2-й законы Ньютона. Оказывается, 2-й и 3-й законы Ньютона работают только в инерциальных системах отсчета.

Инерциальные системы отсчета — это системы отсчета, в которых тела двигаются равномерно, прямолинейно и поступательно (или же находятся в состоянии покоя), если на тела не действуют никакие другие тела или действие этих тел скомпенсировано.

“Ух, как сложно”, — можете сказать вы. “Да, вы правы”, — ответим мы вам.

Если говорить по-простому, то инерциальные системы — это системы, в которых тела, на которые не действуют силы (или их суммарное действие равно нулю), будут либо стоять на месте, либо двигаться с постоянной скоростью в неизменном направлении. В таких системах любое изменение скорости (то есть наличие ускорения) связано только с действием силы. Скорость не может меняться, если нет силы.

А вот в НЕинерциальных системах скорость тела может меняться без силы. То есть может меняться беспричинно.

Пример: представьте, что вы стоите в центре автобуса с полностью затонированными стеклами. И этот “пацанский” автобус равномерно едет по идеально ровной дороге. Находясь внутри, вы даже не чувствуете, что автобус едет.

В какой-то момент автобус резко тормозит. Что будет происходить с вами? Жизненный опыт подсказывает нам, что что вы резко “полетите” вперед. При этом на вас не действует никакая сила. То есть вы начинаете двигаться относительно автобуса без всякой причины.

Автобус — это пример неинерциальной системы отсчета. Неинерциальные системы отсчета — это системы, которые двигаются с ускорением. В них не работают законы Ньютона. Тела в таких системах отсчета могут беспричинно менять свою скорость.

С такими системами мы работать не будем.

Нашу Землю можно условно отнести к инерциальным системам отсчета. Почему? Земля на самом деле неинерциальна. Неинерциальна она потому, что Земля вращается. А это значит, что Земля двигается с центростремительным ускорением.

А такие системы (двигающиеся с ускорением) являются неинерциальными. Но так как Земля вращается достаточно медленно, то и центростремительное ускорение получается небольшим.

Поэтому условно Землю можно считать инерциальной системой отсчета.

Собираем вместе все, что мы узнали в этом параграфе:

  • тела действуют друг на друга силами; сила обозначается буквой FFF и измеряется в Ньютонах: [F]=1 кг⋅мc2=1 Ньютон=1 Н[F]=1\text{ кг}\cdot\frac{м}{c2}=1\text{ Ньютон}=1\text{ Н}[F]=1 кг⋅c2м​=1 Ньютон=1 Н;
  • 3-й закон Ньютона: тела действуют друг на друга с равными по модулю (равными по величине) и противоположными по направлению силами: F⃗1→2=−F⃗2→1\vec{F}_{1\to 2}=-\vec{F}_{2\to 1}F⃗1→2​=−F⃗2→1​;
  • 2-й закон Ньютона: под действием силы тело получает ускорение a⃗=F⃗m\vec{a}=\frac{\vec{F}}{m}a⃗=mF⃗​; масса mmm является мерой инертности тела — она показывает, насколько “неохотно” тело набирает скорость, насколько меньшее ускорение получает тело под действием силы;
  • 1-й закон Ньютона говорит о том, где (в каких случаях) работают два других закона Ньютона; они работают в инерциальных системах (системах, которые двигаются без ускорения); в таких системах, если на тело не действуют никакие силы или действие всех сил скомпенсировано, то тело не меняет направления и скорости своего движения или же находится в покое.

Задачи для самостоятельного решения: #егэ-2

Источник: https://lampa.io/p/сила.-три-закона-ньютона-000000008283693c91c06ec35db10645

Законы Ньютона для

3 закона ньютона формулы и определения

Мы уже говорили об основах классической механики. Настала пора поговорить о них подробнее и затронуть в обсуждении чуть больше, чем просто основу. В этой статье мы подробно разберем основные законы классической механики. Как вы уже догадались, речь пойдет о законах Ньютона.

Ежедневная рассылка с полезной информацией для студентов всех направлений – на нашем телеграм-канале.

Основные законы классической механики Исаак Ньютон (1642-1727) собрал и опубликовал в 1687 году. Три знаменитых закона были включены в труд, который назывался «Математические начала натуральной философии».

Был долго этот мир глубокой тьмой окутан
Да будет свет, и тут явился Ньютон.

(Эпиграмма 18-го века)

Но сатана недолго ждал реванша –
Пришел Эйнштейн, и стало все как раньше.

(Эпиграмма 20-го века)

Что стало, когда пришел Эйнштейн, читайте в отдельном материале про релятивистскую динамику. А мы пока приведем формулировки и примеры решения задач на каждый закон Ньютона.

Первый закон Ньютона

Первый закон Ньютона гласит:

Существуют такие системы отсчета, называемые инерциальными, в которых тела движутся равномерно и прямолинейно, если на них не действуют никакие силы или действие других сил скомпенсировано.

Проще говоря, суть первого закона Ньютона можно сформулировать так: если мы на абсолютно ровной дороге толкнем тележку и представим, что можно пренебречь силами трения колес и сопротивления воздуха, то она будет катиться с одинаковой скоростью бесконечно долго.

Инерция – это способность тела сохранять скорость как по направлению, так и по величине, при отсутствии воздействий на тело. Первый закон Ньютона еще называют законом инерции.

До Ньютона закон инерции был сформулирован в менее четкой форме Галилео Галилеем. Инерцию ученый называл «неистребимо запечатленным движением». Закон инерции Галилея гласит: при отсутствии внешних сил тело либо покоится, либо движется равномерно.

Огромная заслуга Ньютона в том, что он сумел объединить принцип относительности Галилея, собственные труды и работы других ученых в своих “Математических началах натуральной философии”.

Понятно, что таких систем, где тележку толкнули, а она покатилась без действия внешних сил, на самом деле не бывает.

На тела всегда действуют силы, причем скомпенсировать действие этих сил полностью практически невозможно.

Например, все на Земле находится в постоянном поле силы тяжести. Когда мы передвигаемся (не важно, ходим пешком, ездим на машине или велосипеде), нам нужно преодолевать множество сил: силу трения качения и силу трения скольжения, силу тяжести, силу Кориолиса.

 

Пример задачи на законы Ньютона

Вот типичная задачка на применение законов Ньютона. В ее решении используются первый и второй законы Ньютона.

Десантник раскрыл парашют и опускается вниз с постоянной скоростью. Какова сила сопротивления воздуха? Масса десантника – 100 килограмм.

Решение:  

Движение парашютиста – равномерное и прямолинейное, поэтому, по первому закону Ньютона, действие сил на него скомпенсировано.

На десантника действуют сила тяжести и сила сопротивления воздуха. Силы направлены в противоположные стороны.

По второму закону Ньютона, сила тяжести равна ускорению свободного падения, умноженному на массу десантника.

Ответ: Сила сопротивления воздуха равна силе тяжести по модулю и противоположна направлена.

Кстати! Для наших читателей сейчас действует скидка 10% на любой вид работы

А вот еще одна физическая задачка на понимание действия третьего закона Ньютона.

Комар ударяется о лобовое стекло автомобиля. Сравните силы, действующие на автомобиль и комара.

Решение:

По третьему закону Ньютона, силы, с которыми тела действуют друг на друга, равны по модулю и противоположны по направлению. Сила, с которой комар действует на автомобиль, равна силе, с которой автомобиль действует на комара.

Другое дело, что действие этих сил на тела сильно отличаются вследствие различия масс и ускорений.

Исаак Ньютон: мифы и факты из жизни

На момент публикации своего основного труда Ньютону было 45 лет. За свою долгую жизнь ученый внес огромный вклад в науку, заложив фундамент современной физики и определив ее развитие на годы вперед.

Он занимался не только механикой, но и оптикой, химией и другими науками, неплохо рисовал и писал стихи. Неудивительно, что личность Ньютона окружена множеством легенд.

Ниже приведены некоторые факты и мифы из жизни И. Ньютона. Сразу уточним, что миф – это не достоверная информация. Однако мы допускаем, что мифы и легенды не появляются сами по себе и что-то из перечисленного вполне может оказаться правдой.

  • Факт. Исаак Ньютон был очень скромным и застенчивым человеком. Он увековечил себя благодаря своим открытиям, однако сам никогда не стремился к славе и даже пытался ее избежать.
  • Миф. Существует легенда, согласно которой Ньютона осенило, когда на наго в саду упало яблоко. Это было время чумной эпидемии (1665-1667), и ученый был вынужден покинуть Кембридж, где постоянно трудился. Точно неизвестно, действительно ли падение яблока было таким роковым для науки событием, так как первые упоминания об этом появляются только в биографиях ученого уже после его смерти, а данные разных биографов расходятся.
  • Факт. Ньютон учился, а потом много работал в Кембридже. По долгу службы ему нужно было несколько часов в неделю вести занятия у студентов. Несмотря на признанные заслуги ученого, занятия Ньютона посещались плохо. Бывало, что на его лекции вообще никто не приходил. Скорее всего, это связано с тем, что ученый был полностью поглощен своими собственными исследованиями.
  • Миф. В 1689 году Ньютон был избран членом Кембриджского парламента. Согласно легенде, более чем за год заседания в парламенте вечно поглощенный своими мыслями ученый взял слово для выступления всего один раз. Он попросил закрыть окно, так как был сквозняк.
  • Факт. Неизвестно, как бы сложилась судьба ученого и всей современной науки, если бы он послушался матери и начал заниматься хозяйством на семейной ферме. Только благодаря уговорам учителей и своего дяди юный Исаак отправился учиться дальше вместо того, чтобы сажать свеклу, разбрасывать по полям навоз и по вечерам выпивать в местных пабах.

Дорогие друзья, помните – любую задачу можно решить! Если у вас возникли проблемы с решением задачи по физике, посмотрите на основные физические формулы. Возможно, ответ перед глазами, и его нужно просто рассмотреть. Ну а если времени на самостоятельные занятия совершенно нет, специализированный студенческий сервис всегда к вашим услугам!

В самом конце предлагаем посмотреть видеоурок на тему “Законы Ньютона”.

Источник: https://zaochnik-com.ru/blog/zakony-nyutona-dlya-chajnikov-obyasnenie-primer/

ЗнатокПрав
Добавить комментарий